### 2017 Central Valley Flood Protection Plan Update

#### **January 28, 2015**

Presented by:

Michael Mierzwa, P.E.

Michael.Mierzwa@water.ca.gov

Lead Flood Management Planner

California Department of Water Resources





## **Today's Discussion**

#### Where We've Been

- Preliminary Basin-Wide Feasibility Study Approaches



#### Where We Are

- Introduction to Basin-Wide Feasibility Study Atlases

#### Where We're Going

- Summary of DWR's RFMP Phase 1 Content Review



# Where We've Been Preliminary Basin-Wide Feasibility Study Approaches





### **2017 CVFPP Update**



Tracking, Reporting of Investment Actions & Results



Measuring Value



## One Process, Many Activities

#### **CVFPP** Assessment

- BWFS System Performance Analysis
- RFMP Regional Visions and Priorities
- Conservation Strategy
- 0&M
- Safety & Risk
- Climate Change
- Long-term Economic Consequences of Flooding
- USACE Feasibility Studies

006





## Basin-Wide Feasibility Study System Configurations

Chapter 2 Converging

Chapter

3

System
Management



- Refine the State's vision for implementing SSIA
- Packages of structural and nonstructural actions
- Flexible to account for new information and changes in priorities or systemwide needs
- Technical evaluations ongoing
- Informed by regional priorities; will inform longterm financing and implementation strategies for the SSIA and the 2017 CVFPP Update





## Preliminary Basin-Wide Feasibility Study Approaches

#### **Sacramento River Basin**

- Fix in Place Approach
- Build Storage to Store Peak Flood Flows Approach
- Expand and Extend Bypasses to Increase Conveyance Capacity of the Flood Management System Approach
- Combination of Balanced and Reasonable Actions in Above Approaches

#### San Joaquin River Basin

- Paradise Cut Bypass Approach
- Floodplain Transitory Storage Approach
- Raise and Fix-in-Place Levee Approach
- Upstream Storage Approach
- Combination of Balanced and Reasonable Actions in Above Approaches





## Identifying the State-Preferred Approach

## Sacramento River Basin



#### **Capital Investment vs. Benefits**

Conceptual approaches for improving system resiliency in the Sacramento Basin





## Identifying the State-Preferred Approach San Joaquin River Basin



#### **Capital Investment vs. Benefits**

Conceptual approaches for improving system resiliency in the San Joaquin Basin





## Identifying the State-Preferred Approaches



#### **Capital Investment vs. Benefits**

Conceptual approaches for improving system resiliency in the Sacramento Basin



#### **Capital Investment vs. Benefits**

Conceptual approaches for improving system resiliency in the San Joaquin Basin





### **Where We Are**

## Introduction to Basin-Wide Feasibility Study Atlases





## **Managing for Stage**

## **'Stage'** is the elevation of flood water surface at any given location







## **Understanding Stage-Discharge**





- Best metric for measuring and explaining flood risk
- The higher the water gets in a river, the more likely that flood waters will escape





## **Understanding Stage-Discharge**









## **Inspiration for Basin-Wide Feasibility Study Atlases**







## What are Basin-Wide Feasibility Study Atlases?

- Living documents linking system performance to geospatial data
- Tools to identify a range of maximum flows that can be safely conveyed through each of the State Plan of Flood Control bypass systems
- Estimate 100- and 200-year peak flows
  - Using the Central Valley Hydrology Study (CVHS) hydrology, without climate change
  - Results compared to USACE 1957 design flows and design profiles
- Demonstrate potential performance of system based on key assumptions and initial configurations





## Why Do We Need Atlases?



- California's current flood system design based on limited experience
- No consideration of rise/recession of water levels
- We owe it to future generations to consider how flood water rises and falls throughout the system
- Must account for climate change when planning to manage future flood events





## **Multiple Atlas Volumes Planned**

Chapter
3
System
Management

#### Sacramento River Basin

Volume 1: Lower Sacramento River

- Chapter 1 Yolo Bypass, Cache Creek, Willow Slough Bypass, DWSC
- Chapter 2 American River
- Chapter 3 Sacramento River below Fremont Weir

Volume 2: Mid-Upper Sacramento River/Feather River Region

- Chapter 4 Sacramento River above Fremont Weir
- Chapter 5 Sutter Bypass
- Chapter 6 Feather, Yuba and Bear Rivers, inclusive of SPFC Tributaries

#### San Joaquin River Basin

- To be determined, Spring 2015





### **Volume 1: Lower Sacramento River**

- LS1: Communities and Critical Facilities
   Cities and Small Communities protected by the levees, essential facilities and transportation facilities
- LS2: Water Resources Facilities and Waterways

  Streams with SPFC levees, non-SPFC levees, waterways, stream gages, bridges, weirs
- LS3: Maintenance Responsibilities

  Designates where DWR and where LMAs are obligated to maintain levees and channels
- LS4: USACE Design Flow Capacities and Current Performance
   USACE 1957 design flows and design profile, as well as current channel flow carrying capacity displayed

## **Volume 1, Chapter 1 - Yolo Bypass**



## The Yolo Bypass

- Part of the Sacramento River
- Critical link to managing
   California's Water Resources
- A multi-purpose landscape designed and managed to provide a range of benefits:
  - public safety
  - economic stability
  - environmental sustainability



#### Proposed changes to the Yolo Bypass must:

- Safely address these benefits and significant flood events
- Consider the entire system both downstream and upstream





## **Yolo Bypass Performance: Assumptions**

| Scenario Assumptions                      | (A)<br>100-yr Flood<br>Flows       | (B)<br>200-yr Flood<br>Flows       | (C)<br>100-yr Flood Flows w/<br>Near-Term Conditions |
|-------------------------------------------|------------------------------------|------------------------------------|------------------------------------------------------|
| Upstream<br>Levee Performance             | Hold water to<br>1957 DWSE         | Hold water to<br>1957 DWSE         | Hold water to<br>1957 DWSE                           |
| Downstream<br>Boundary Condition          | 1997 Historical Tide<br>Conditions | 1997 Historical Tide<br>Conditions | 1997 Historical Tide<br>Conditions                   |
| American River & Upstream Improvements    | n/a                                | n/a                                | +30,000 cfs                                          |
| Additional Yolo Bypass<br>Habitat         | n/a                                | n/a                                | +20,000 acres of ag land converted to habitat        |
| Climate Change:<br>Sea Level Rise         | n/a                                | n/a                                | Not considered                                       |
| Climate Change: Increased Upstream Runoff | n/a                                | n/a                                | Not considered                                       |





## Looking at Yolo Bypass Performance: 100-yr Flood Flows

#### **Assumptions**

- Base model conditions with estimated 100-year water surface elevations using CVHS 1997 100% hydrology
- Downstream boundary condition assumed 1997 high tidal conditions



Atlas Map 1.1: Stage and freeboard deficiencies at approximate 100-year flood flows





## Looking at Yolo Bypass Performance: 200-yr Flood Flows

#### **Assumptions**

- Base model conditions with estimated 200-year water surface elevations using CVHS 1997 120% hydrology
- Downstream boundary condition assumed high tidal conditions



Atlas Map 1.2: Stage and freeboard deficiencies at 200-year flood flows





## Looking at Yolo Bypass Performance: 100-yr Flood Flows / Near-Term Climate Change (2030)

#### **Assumptions**

- Base model conditions with estimated 100-year water surface elevations using CVHS 1997 100+% hydrology
- Downstream boundary condition assumed 1997 high tidal conditions



Atlas Map 1.3: Stage and freeboard deficiencies at approximate 100-year flood flows with near-term climate change adjustments



## **Additional Analyses**







### Where Are We in the BWFS Process?







## Where We're Going RFMP "Phase 1" Content Review

## One Process, Many Activities



#### **CVFPP** Assessment

- BWFS System Performance Analysis
- RFMP Regional Visions and Priorities
- Conservation Strategy
- 0&M
- Safety & Risk
- Climate Change
- Long-term Economic Consequences of Flooding
- USACE Feasibility Studies







## Value of Regional Flood Management Planning

Chapter 2 Converging

System Management

Chapter

- Reviews technical assumptions used for BWFS/CVFPP studies
- Informs CVFPP Finance Plan (i.e., ability to pay, etc.) and FloodSAFE Implementation Program guidance criteria
- Improves coordination and engagement







## **DWR's Review of Regional Plans**

### What are we looking for?

- Consistency with scope of funding agreements
- Consistency with SSIA and CVFPP goals
- Specifics about proposed regional flood improvements, management actions and policy recommendations





## **Continual Implementation**

Chapter

4

Implementation Timing



- 2017 CVFPP promotes progress on system, regional and local benefits concurrently
- RFMPs can inform investments for all three management action types

## Next Steps: Regional Flood Management Planning

- February/March 2015 Series of RFMP meetings with Lead Flood Planner
  - Discuss regional plans
  - View proposed project sites
  - See region "through your eyes"
- Ensure common understanding of regional challenges, opportunities and priorities
- Opportunities to discuss integration into
   2017 Update and future planning







### **CVFPP Progression (as of January 2015)**







## **Proposed Future CVFPP Updates**

#### Regular CVFPP, Coordinating Committee and public updates planned:

| Venue                          | Date                     | Proposed Topic                                              |
|--------------------------------|--------------------------|-------------------------------------------------------------|
| CVFPB Public Workshop          | February 13, 2015        | Conservation Strategy Review                                |
| Coordinating Committee Meeting | February 2015 (Date TBD) | CVFPP Update — Summary of DWR's RFMP Phase 1 Content Review |
| CVFPB Meeting                  | February 27, 2015        | CVFPP Update — BWFS Preliminary<br>Technical Work           |

2017 ROADMAP

### 2017 Central Valley Flood Protection Plan Update

#### **January 28, 2015**

Presented by:

Michael Mierzwa, P.E.

Michael.Mierzwa@water.ca.gov

Lead Flood Management Planner

California Department of Water Resources





